
Date: 7/24/2002 Copyright 2002 Quantum3D, Inc. PAGE 1

TEXTURE COMPRESSION
ON QUANTUM3D PCIGs

Methods and Benefits

Author: Brian Dickens

Date: 7/24/2002 Copyright 2002 Quantum3D, Inc. PAGE 2

INTRODUCTION
In the quest to achieve greater visual realism, visual simulation applications employ 3D content
databases that make use of many high-resolution texture maps. These textures increase the realism of
3D objects by using photo-specific texture maps and super high-resolution geo-specific satellite imagery
mapped to the terrain. In doing so, these applications many times use texture maps whose total size
exceeds the amount texture memory available in standard graphics subsystems. In some cases, these
databases and textures even exceed PCIG system memory size. In the case of databases that cover
large geographic portions of the world with satellite imagery, the data can represent many gigabytes of
information.

Physical memory and system bandwidths limit applications that use only conventional non-compressed
textures. Until recently, the only method of dealing with such large amounts of data is a database and
texture paging strategy that swaps textures into graphics memory when needed for rendering, and
makes them available for discarding when not needed for rendering. Unfortunately conventional texture
storage formats are not efficient methods for storing textures on disk, in memory or for efficient transfer
into of system and graphics memory.

Overcoming the limitations of these envelope-pushing applications has driven the implementation of
hardware supported texture compression capabilities. Texture compression is a method of reducing the
overall storage requirements for textured rendering; this means more texture may be stored in a given
amount of texture memory. The result is the ability to use more textures with higher accuracy to
increase rendering quality. Texture compression also reduces the amount of bandwidth required to
transfer and process textures for rendering. This increases fill-rate and frame rate creating a more
realistic, responsive and accurate simulation.

WHAT IS TEXTURE COMPRESSION?
Although there are many texture compression technologies, the two adopted by the leading graphics
chip manufacturers for use in graphics applications are FXT1 and DXTn. FXT1 texture compression
was the first texture compression format available to application developers. It was developed by 3dfx
and is now an open source project. Slightly later, S3 developed a nearly identical texture compression
algorithm called S3 Texture Compression (S3TC). Microsoft licensed the S3TC technology and
incorporated it into DXTn texture compression; this is now the mechanism for compressing textures in
DirectX. Texture compression is also available to OpenGL applications via the
GL_ARB_texture_compression extension; the formats offered are implementation dependent. Many
applications programs use DXTn texture compression and many of these are OpenGL based
applications. Current PCIG products from Quantum3D support either FXT1 or DXTn texture
compression.

Texture compression reduces the amount of data required to store texture map images. Both FXT1 and
DXTn result in very little loss of texture image quality when compared to the original uncompressed
image as shown in Figure 1 and Figure 2 on page 3. FXT1 and DXTn use a similar strategy for
compressing the texture, this operation is termed encoding. The Quantum3D graphic subsystem
performs compressed texture decoding automatically.

Date: 7/24/2002 Copyright 2002 Quantum3D, Inc. PAGE 3

Figure 1: FXT1 compressed texture, image data courtesy of Terrain Experts, Inc.

Figure 2: Non-compressed texture, image data courtesy of Terrain Experts, Inc.

Date: 7/24/2002 Copyright 2002 Quantum3D, Inc. PAGE 4

Both FXT1 and DXTn use similar schemes for encoding. The texture is broken into blocks of 4x4 texels,
resulting in 16 texels per block. The 16 texels are examined, and two colors are chosen, which are
typically the extremes of the 16 texel colors. The encoding/decoding process calculates two additional
colors by interpolating between the two first colors; these two interpolated colors are not stored in the
compressed format. The two stored color values and the two interpolated color values define the colors in
the 4x4 texel block. Because there are only four colors for each 4x4 block, each color in the block can be
represented using only 2 bits. The total storage required for the 4x4 texel block is 64 bits (16x2 bit colors
and 2x16 bit colors), resulting in an average of 4 bits per texel which is a compression ratio of 6:1 Figure 3
is a diagram of the storage layout for a 4x4 block of a compressed texture.

The FXT1 format offers four different methods for compression, some of which results in slightly lower
compression ratios, but can result in better image quality. One of these algorithms is CC_MIXED and is
the equivalent of DXTn compression. Other compression algorithms supported in FXT1 are CC_HI, which
is used for better spatial resolution, CC_CHROMA (best for complex color areas), and CC_ALPHA (best
control for complex alpha values).

Once the texture has been encoded, it is stored to disk and may be used in an application just like any
conventional texture. Supporting compressed texture in an application is very straightforward since
hardware in the graphics subsystem performs the decoding.

THE BENEFITS OF TEXTURE COMPRESSION
COTS tools support
A wide variety of products and tools support FXT1 texture compression; some of the COTS product
offerings are Quantum3D OpenGVS, Terrain Experts, Inc TerraVista and CG2 Vtree and Mantis. In
addition, Quantum3D supplies conversion utilities used to convert most popular image formats (both
compressed and uncompressed texture image file formats).

Increased effective amount of texture memory
In order to understand the drastic effect of using texture compression, consider the case of a 24 bit
2048x2048, 3-component texture. Using a format that does not use compression the number of bytes
required to store the texture is 2048x2048x24/8 Bytes or 12 MB For a 24-bit texture, the compression ratio
is 6:1, and this12 MB texture reduces to 2 MB -- a significant improvement over conventional storage
formats. Compression of 32 bit, 4-component textures (RGBA) is 8:1. Figure 4 illustrates the savings
when using a texture compression method.

Figure 3: Basic DXTn pixel block layout, courtesy of Microsoft MSDN

Date: 7/24/2002 Copyright 2002 Quantum3D, Inc. PAGE 5

(Please note that when calculating texture memory allocation you must add 1/3 of the texture storage
requirements in order to compensate for MIPMAP storage requirements. The calculations above as well as
those in Figure 4 do not contain the extra 1/3 memory impact.) Reducing the amount of memory needed to
store textures, increases the amount of effective texture memory available to the application. For example,
an application that utilizes texture compression of RGB textures will effectively have 6 times more texture
memory available to the application.

Applications may use more textures with increased resolution
Considering the case of a 256x256 RGBA image a conventional texture will require 256 KB of memory while
a compressed texture only requires 32 KB. The result is that the application could use a total of 8 256x256
compressed textures in the same 256KB, which would significantly increase the visual realism of the 3D
scene. If increased resolution is desired the same 256 KB of could be used to store a much higher
resolution 1024x512 texture. The increase in effective texture memory also opens the door for using more
texture techniques such as detail texture, texture light maps and other advanced texture techniques.

Decreased bandwidth requirement increases fill-rate
The amount of texture memory bandwidth available helps determine ill-rate performance. Using textures in a
compressed format allows for more efficient graphics subsystem operations. Using the example of a 32-bit
texture compressed to a 4-bit format, the compressed texture is 8 times more efficient to transfer within the
graphics system when compared to a conventional texture. The decreased requirement for texture memory
bandwidth results in higher fill-rates and frame rates.

Decreased bandwidth improves real-time database paging performance
Textures used in large area database paging applications must travel across numerous interfaces during the
rendering process. Typically, textures are stored on a hard disk, because of this; textures are transferred
over a PCI bus into system memory. Once the textures are in system memory, they are then transferred
over the PCI or AGP bus to the graphics subsystem. Because database paging can involve each of these
transfer operations in real-time during each frame of the simulation, paging will benefit significantly from
using texture compression. In the case of real-time database paging, each of these transfers receives a
significant improvement in performance. Because of the decreased bandwidth needed for each texture,
texture paging algorithm’s transfer rates are up to 6 times more efficient when using compressed textures
(compared to 24-bit RGB uncompressed textures). Figure 5 shows where texture compression improves
efficiency of transfer operations.

2 MB16 MB12 MB8 MB4 MB20482048

512 KB4 MB3 MB2 MB1 MB10241024

128 KB1 MB768 KB512 KB256 KB512512

32 KB256 KB192 KB128 KB64 KB256256

8 KB64 KB48 KB32 KB16 KB128128

2 KB16 KB12 KB8KB4 KB6464

FXT1/DXTn32bit24bit16bit8bitY ResX Res

Figure 4: Storage Requirements for textures of varying color depth and size

Date: 7/24/2002 Copyright 2002 Quantum3D, Inc. PAGE 6

Texture compression reduces disk storage requirements
Another benefit of texture compression is reduced disk storage requirements. This is especially important
for the case of large area databases. Consider an example of a database that covers an area of 1000 Km2.
If the database uses texture maps where each texel represents 5m, then the resulting texture (or set of
textures) would be 200,000 x 200,000 texels. If this were a conventional texture, it would require 37.25 GB
of storage (on disk and in memory). The same texture compressed would only require 6.2 GB of storage.

CONCLUSION
Texture compression has a wealth of benefits to applications that make use of this technology. Using
texture compression gives an application effective texture memory of 288 Megatexels when using 4 bit
compressed textures (assuming that there is 64 MB graphics memory and a 1280x1024 frame buffer).
Increased effective texture memory means that the application is able to use more, higher resolution texture
maps for increased accuracy and realism. In addition, the application is more flexible at using these textures
for more advanced techniques such as detail textures and lighting maps. Perhaps the most significant
improvement in overall performance appears in large area database applications that make heavy use of
texture and terrain database paging. For these applications, texture compression improves disk storage
requirements, paging efficiency as well as increases fill-rate.

Because there are COTS software packages available that support texture compression, visual simulation
application developers can make use of the texture compression tools appropriate for their task. For the
OpenGL or scene manager developer, tools and APIs are available that make developing applications that
make use of compressed textures easy. People using turnkey solutions from PCIG vendors like
Quantum3D or CG2 will also benefit since these are standard features in these COTS products. Texture
compression is now a standard offering on Quantum3D PCIG systems making use of this technology will not
only make applications more realistic, but will also improve performance.

Figure 5: System diagram, improvements in texture transfer rates.

Date: 7/24/2002 Copyright 2002 Quantum3D, Inc. PAGE 7

GLOSSARY
4-component textures: Textures that contain information about Red, Green, Blue and Alpha (RGBA)

color components. These are typically 32-bit textures when stored using conventional texture
storage methods. There are also 16-bit formats for 4-component texture, for example, RGB each
use 5 bits and Alpha uses only a single bit.

COTS: Commercial off-the-shelf

Frame rate: The frequency at which a graphics system and/or application redraws the screen. Typically,
frame rate is measured in milliseconds or Hz. For example, an application drawing the screen 60
times per second has a frame rate of 60 Hz or 16.67ms. When measuring pure graphics
performance it is important to disable synchronization to the monitor vertical refresh frequency so
that you are measuring drawing performance and not fixed to the refresh rate of the monitor. This
will introduce some artifacts, but will yield accurate drawing performance numbers.

Geo-specific texture maps: Texture maps derived from photographs of a specific geographic area of the
world. The original source of these textures is typically satellite imagery. After acquiring this imagery
image processing is applied to the images before they are suitable for mapping to the database.
Texture compression is performed during the mapping process of database generation.

Open source: Open source promotes software reliability and quality by supporting independent peer
review and rapid evolution of source code. To be OSI certified, the software must be distributed
under a license that guarantees the right to read, redistribute, modify, and use the software freely.
For a more complete definition, please refer to http://www.opensource.org/docs/definition_plain.html.

Photo-specific texture maps: Texture maps derived from digital or scanned photographs of real objects.
These are then mapped to 3D objects in a database. Texture compression is typically performed
after the mapping process.

REFERENCES
Microsoft MSDN
3dfx, Inc, FXT1 Texture Compression Technology White Paper

